首页> 外文OA文献 >Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow
【2h】

Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow

机译:高非平衡态Boltzmann方程的正规解   傅立叶流和Couette流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The state of a single-species monatomic gas from near-equilibrium to highlynonequilibrium conditions is investigated using analytical and numericalmethods. Normal solutions of the Boltzmann equation for Fourier flow (uniformheat flux) and Couette flow (uniform shear stress) are found in terms of theheat-flux and shear-stress Knudsen numbers. Analytical solutions are found forinverse-power-law molecules from hard-sphere through Maxwell at small Knudsennumbers using Chapman-Enskog (CE) theory and for Maxwell molecules at finiteKnudsen numbers using a moment-hierarchy (MH) method. Corresponding numericalsolutions are obtained using the Direct Simulation Monte Carlo (DSMC) method ofBird. The thermal conductivity, the viscosity, and the Sonine-polynomialcoefficients of the velocity distribution function from DSMC agree with CEresults at small Knudsen numbers and with MH results at finite Knudsen numbers.Subtle differences between inverse-power-law, variable-soft-sphere, andvariable-hard-sphere representations of Maxwell molecules are observed. The MHand DSMC results both indicate that the effective thermal conductivity and theeffective viscosity for Maxwell molecules are independent of the heat-fluxKnudsen number, and additional DSMC simulations indicate that these transportproperties for hard-sphere molecules decrease slightly as the heat-flux Knudsennumber is increased. Similarly, the MH and DSMC results indicate that theeffective thermal conductivity and the effective viscosity for Maxwellmolecules decrease as the shear-stress Knudsen number is increased, andadditional DSMC simulations indicate the same behavior for hard-spheremolecules. These results provide strong evidence that the DSMC method can beused to determine the state of a gas under highly nonequilibrium conditions
机译:使用解析和数值方法研究了从接近平衡状态到高度非平衡状态的单物种单原子气体的状态。根据热通量和切应力克努森数,可以找到傅立叶流(均匀热通量)和库埃特流(均匀切应力)的玻尔兹曼方程的正解。使用查普曼-恩斯科格(CE)理论找到了从硬球到麦克斯韦的逆幂律分子在小Knudsen数下的解析解,并通过矩层次(MH)方法找到了在有限Knudsen数的麦克斯韦分子的解析解。使用Bird的直接模拟蒙特卡洛(DSMC)方法可获得相应的数值解。 DSMC的速度分布函数的热导率,粘度和Sonine多项式系数在小Knudsen数下与CE结果一致,在有限Knudsen数下与MH结果一致。反幂律,可变软球,观察到麦克斯韦分子的可变硬球表示。 MHand DSMC的结果均表明,麦克斯韦分子的有效导热系数和有效粘度与热通量努氏数无关,另外的DSMC模拟表明,随着热通量努氏数的增加,硬球分子的这些传输性质会略有降低。同样,MH和DSMC结果表明,麦克斯韦尔分子的有效导热系数和有效粘度随切应力Knudsen数的增加而降低,另外的DSMC模拟表明硬球分子具有相同的行为。这些结果提供了有力的证据,DSMC方法可用于确定高度非平衡条件下的气体状态

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号